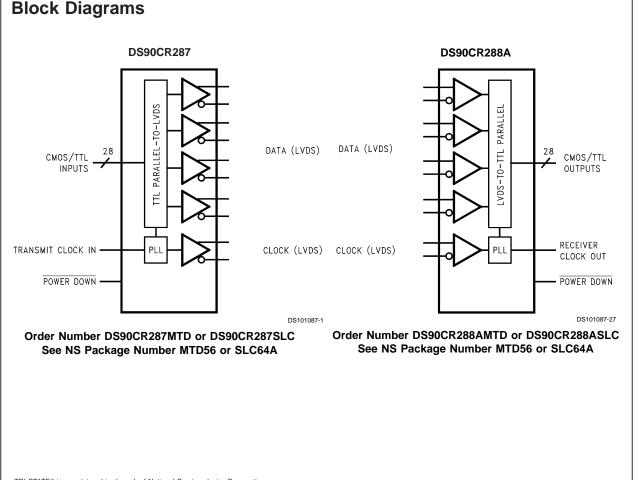

#### July 2001

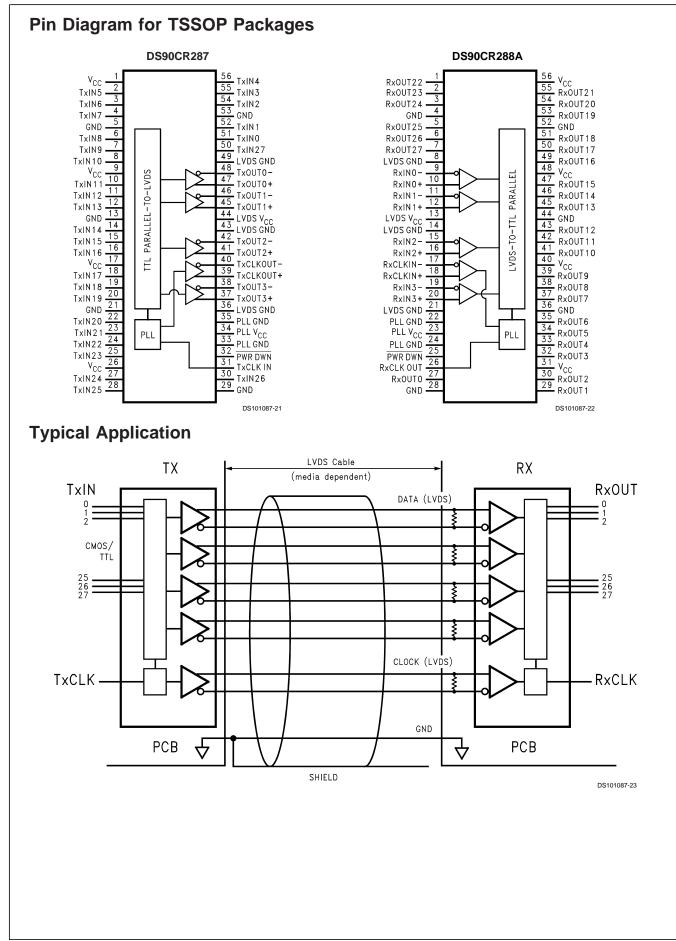


### DS90CR287/DS90CR288A +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-85 MHZ


#### **General Description**

The DS90CR287 transmitter converts 28 bits of LVCMOS/ LVTTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CR288A receiver converts the four LVDS data streams back into 28 bits of LVCMOS/LVTTL data. At a transmit clock frequency of 85 MHZ, 28 bits of TTL data are transmitted at a rate of 595 Mbps per LVDS data channel. Using a 85 MHZ clock, the data throughput is 2.38 Gbit/s (297.5 Mbytes/sec). Both devices are also offered in 64 ball, 0.8mm fine pitch ball grid array (FBGA) package which provides a 44 % reduction in PCB footprint over the 56L TSSOP package.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high-speed TTL interfaces.


#### Features

- 20 to 85 MHZ shift clock support
- 50% duty cycle on receiver output clock
- 2.5 / 0 ns Set & Hold Times on TxINPUTs
- Low power consumption
- ±1V common mode range (around +1.2V)
- Narrow bus reduces cable size and cost
- Up to 2.38 Gbps throughput
- Up to 297.5 Megabytes/sec bandwidth
- 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead TSSOP package
- Both devices are also available in 64 ball, 0.8mm fine pitch ball grid array (FBGA) package



TRI-STATE® is a registered trademark of National Semiconductor Corporation.





# DS90CR287/DS90CR288A

#### Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> ) | -0.3V to +4V                      |
|-----------------------------------|-----------------------------------|
| CMOS/TTL Input Voltage            | -0.5V to (V <sub>CC</sub> + 0.3V) |
| CMOS/TTL Output Voltage           | -0.3V to (V <sub>CC</sub> + 0.3V) |
| LVDS Receiver Input Voltage       | -0.3V to (V <sub>CC</sub> + 0.3V) |
| LVDS Driver Output Voltage        | -0.3V to (V <sub>CC</sub> + 0.3V) |
| LVDS Output Short Circuit         |                                   |
| Duration                          | Continuous                        |
| Junction Temperature              | +150°C                            |
| Storage Temperature               | –65°C to +150°C                   |
| Lead Temperature                  |                                   |
| (Soldering, 4 sec.)               | +260°C                            |
| Solder Reflow Temperature         |                                   |
| (20 sec for FBGA)                 | +220°C                            |
| Maximum Package Power Dissip      | pation @ +25°C                    |
| MTD56 (TSSOP) Package:            |                                   |
| DS90CR287MTD                      | 1.63 W                            |
| DS90CR288AMTD                     | 1.61 W                            |
| Package Derating:                 |                                   |
| DS90CR287MTD                      | 12.5 mW/°C above +25°C            |
|                                   |                                   |

| 12.4 mW/°C above +25°C |
|------------------------|
|                        |
|                        |
| 2.0 W                  |
| 2.0 W                  |
|                        |
| 10.2 mW/°C above +25°C |
| 10.2 mW/°C above +25°C |
|                        |
| > 7kV                  |
| > 700V                 |
| > ±300mA               |
|                        |

## Recommended Operating Conditions

|                                   | Min | Nom | Max | Units     |
|-----------------------------------|-----|-----|-----|-----------|
| Supply Voltage (V <sub>CC</sub> ) | 3.0 | 3.3 | 3.6 | V         |
| Operating Free Air                |     |     |     |           |
| Temperature (T <sub>A</sub> )     | -10 | +25 | +70 | °C        |
| Receiver Input Range              | 0   |     | 2.4 | V         |
| Supply Noise Voltage ( $V_{CC}$ ) |     |     | 100 | $mV_{PP}$ |

#### **Electrical Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified

| Symbol          | Parameter                                                        | Conditions                               | Min   | Тур   | Max             | Units |
|-----------------|------------------------------------------------------------------|------------------------------------------|-------|-------|-----------------|-------|
| LVCMOS          | S/LVTTL DC SPECIFICATIONS                                        | •                                        |       | •     | •               | •     |
| V <sub>IH</sub> | High Level Input Voltage                                         |                                          | 2.0   |       | V <sub>cc</sub> | V     |
| V <sub>IL</sub> | Low Level Input Voltage                                          |                                          | GND   |       | 0.8             | V     |
| V <sub>OH</sub> | High Level Output Voltage                                        | $I_{OH} = -0.4 \text{ mA}$               | 2.7   | 3.3   |                 | V     |
| V <sub>OL</sub> | Low Level Output Voltage                                         | I <sub>OL</sub> = 2 mA                   |       | 0.06  | 0.3             | V     |
| V <sub>CL</sub> | Input Clamp Voltage                                              | $I_{CL} = -18 \text{ mA}$                |       | -0.79 | -1.5            | V     |
| I <sub>IN</sub> | Input Current                                                    | $V_{IN} = 0.4V, 2.5V \text{ or } V_{CC}$ |       | +1.8  | +15             | μA    |
|                 |                                                                  | V <sub>IN</sub> = GND                    | -10   | 0     |                 | μA    |
| l <sub>os</sub> | Output Short Circuit Current                                     | V <sub>OUT</sub> = 0V                    |       | -60   | -120            | mA    |
| LVDS DI         | RIVER DC SPECIFICATIONS                                          |                                          |       |       |                 |       |
| V <sub>OD</sub> | Differential Output Voltage                                      | $R_{L} = 100\Omega$                      | 250   | 290   | 450             | mV    |
| $\Delta V_{OD}$ | Change in V <sub>OD</sub> between<br>Complimentary Output States |                                          |       |       | 35              | mV    |
| Vos             | Offset Voltage (Note 4)                                          |                                          | 1.125 | 1.25  | 1.375           | V     |
| $\Delta V_{OS}$ | Change in V <sub>OS</sub> between<br>Complimentary Output States |                                          |       |       | 35              | mV    |
| l <sub>os</sub> | Output Short Circuit Current                                     | $V_{OUT} = 0V, R_L = 100\Omega$          |       | -3.5  | -5              | mA    |
| I <sub>oz</sub> | Output TRI-STATE <sup>®</sup> Current                            | $\overline{PWR\;DWN}=0V,$                |       | ±1    | ±10             | μA    |
|                 |                                                                  | $V_{OUT} = 0V \text{ or } V_{CC}$        |       |       |                 |       |
| LVDS RI         | ECEIVER DC SPECIFICATIONS                                        | •                                        |       |       | •               | ·     |
| V <sub>TH</sub> | Differential Input High Threshold                                | $V_{CM} = +1.2V$                         |       |       | +100            | mV    |
| V <sub>TL</sub> | Differential Input Low Threshold                                 | ]                                        | -100  |       |                 | mV    |
| I <sub>IN</sub> | Input Current                                                    | $V_{IN} = +2.4V, V_{CC} = 3.6V$          |       |       | ±10             | μA    |
|                 |                                                                  | $V_{IN} = 0V, V_{CC} = 3.6V$             |       |       | ±10             | μA    |

#### Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified

| Symbol            | Parameter                                | Conditions                                                                         |            | Min | Тур | Max | Units |
|-------------------|------------------------------------------|------------------------------------------------------------------------------------|------------|-----|-----|-----|-------|
| TRANS             | AITTER SUPPLY CURRENT                    |                                                                                    |            |     |     |     |       |
| I <sub>CCTW</sub> | Transmitter Supply Current               | $R_{L} = 100\Omega,$                                                               | f = 33 MHz |     | 31  | 45  | mA    |
|                   | Worst Case (with Loads)                  | $C_L = 5 \text{ pF},$                                                              | f = 40 MHz |     | 32  | 50  | mA    |
|                   |                                          | Worst Case<br>Pattern                                                              | f = 66 MHz |     | 37  | 55  | mA    |
|                   |                                          | (Figures 1, 2)                                                                     | f = 85 MHz |     | 42  | 60  | mA    |
| I <sub>CCTZ</sub> | Transmitter Supply Current<br>Power Down | PWR DWN = Low           Driver Outputs in TRI-STATE           under Powerdown Mode |            |     | 10  | 55  | μA    |
| RECEIV            | ER SUPPLY CURRENT                        |                                                                                    |            |     | •   |     |       |
| I <sub>CCRW</sub> | Receiver Supply Current Worst            | C <sub>L</sub> = 8 pF,<br>Worst Case<br>Pattern<br>( <i>Figures 1, 3</i> )         | f = 33 MHz |     | 49  | 70  | mA    |
|                   | Case                                     |                                                                                    | f = 40 MHz |     | 53  | 75  | mA    |
|                   |                                          |                                                                                    | f = 66 MHz |     | 81  | 114 | mA    |
|                   |                                          |                                                                                    | f = 85 MHz |     | 96  | 135 | mA    |
| I <sub>CCRZ</sub> | Receiver Supply Current Power<br>Down    | PWR DWN = Low<br>Receiver Outputs Stay Low during<br>Powerdown Mode                |            |     | 140 | 400 | μA    |

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

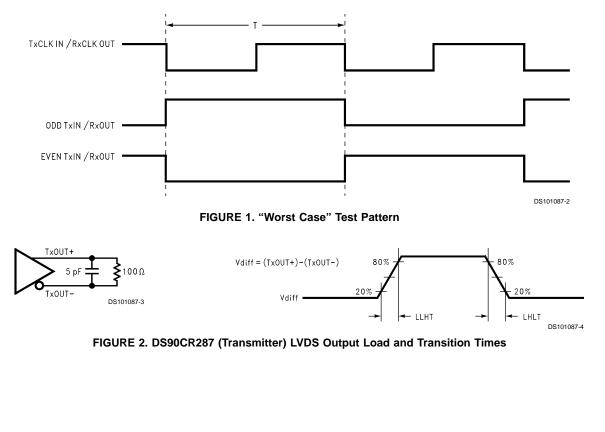
Note 2: Typical values are given for V\_{CC} = 3.3V and T\_A = +25  $^\circ\text{C}.$ 

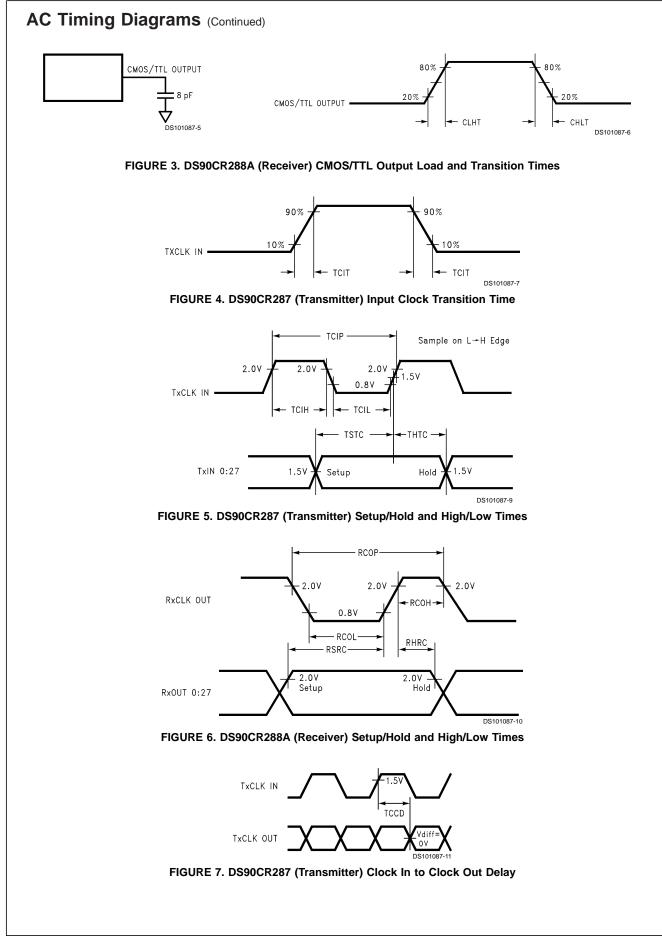
Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except  $V_{OD}$  and  $\Delta V_{OD}$ ).

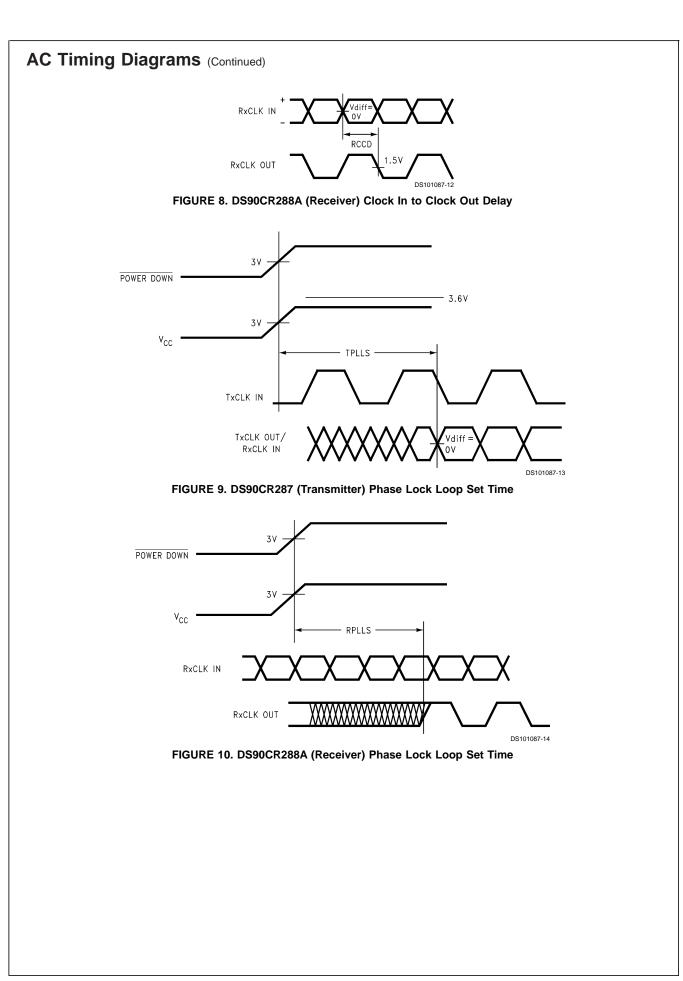
Note 4:  $V_{\text{OS}}$  previously referred as  $V_{\text{CM}}.$ 

#### **Transmitter Switching Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified


| Symbol | Parameter                                                |                                         | Min   | Тур   | Max   | Units |
|--------|----------------------------------------------------------|-----------------------------------------|-------|-------|-------|-------|
| LLHT   | LVDS Low-to-High Transition Time (Figure 2)              |                                         |       | 0.75  | 1.5   | ns    |
| LHLT   | LVDS High-to-Low Transition Time (Figure 2)              |                                         |       | 0.75  | 1.5   | ns    |
| TCIT   | TxCLK IN Transition Time (Figure 4)                      |                                         | 1.0   |       | 6.0   | ns    |
| TPPos0 | Transmitter Output Pulse Position for Bit0 (Figure 14)   | ) f = 85 MHz                            |       | 0     | 0.20  | ns    |
| TPPos1 | Transmitter Output Pulse Position for Bit1               |                                         | 1.48  | 1.68  | 1.88  | ns    |
| TPPos2 | Transmitter Output Pulse Position for Bit2               |                                         | 3.16  | 3.36  | 3.56  | ns    |
| TPPos3 | Transmitter Output Pulse Position for Bit3               |                                         | 4.84  | 5.04  | 5.24  | ns    |
| TPPos4 | Transmitter Output Pulse Position for Bit4               |                                         | 6.52  | 6.72  | 6.92  | ns    |
| TPPos5 | Transmitter Output Pulse Position for Bit5               |                                         | 8.20  | 8.40  | 8.60  | ns    |
| TPPos6 | Transmitter Output Pulse Position for Bit6               |                                         | 9.88  | 10.08 | 10.28 | ns    |
| TCIP   | TxCLK IN Period (Figure 5)                               |                                         | 11.76 | Т     | 50    | ns    |
| TCIH   | TxCLK IN High Time (Figure 5)                            |                                         | 0.35T | 0.5T  | 0.65T | ns    |
| TCIL   | TxCLK IN Low Time (Figure 5)                             |                                         | 0.35T | 0.5T  | 0.65T | ns    |
| TSTC   | TxIN Setup to TxCLK IN (Figure 5)                        | f = 85 MHz                              | 2.5   |       |       | ns    |
| THTC   | TxIN Hold to TxCLK IN (Figure 5)                         |                                         | 0     |       |       | ns    |
| TCCD   | TxCLK IN to TxCLK OUT Delay (Figure 7)                   | $T_A = 25^{\circ}C,$<br>$V_{CC} = 3.3V$ | 3.8   |       | 6.3   | ns    |
| TPLLS  | Transmitter Phase Lock Loop Set (Figure 9)               | •                                       |       |       | 10    | ms    |
| TPDD   | Transmitter Powerdown Delay (Figure 12)                  |                                         |       |       | 100   | ns    |
| TJIT   | TxCLK IN Cycle-to-Cycle Jitter (Input clock requirement) |                                         |       |       | 2     | ns    |


|        | ver Switching Characteristics<br>mmended operating supply and temperature ranges unless other | erwise specified                 |       |       |       |       |
|--------|-----------------------------------------------------------------------------------------------|----------------------------------|-------|-------|-------|-------|
| Symbol | Parameter                                                                                     |                                  | Min   | Тур   | Max   | Units |
| CLHT   | CMOS/TTL Low-to-High Transition Time (Figure 3)                                               |                                  |       | 2     | 3.5   | ns    |
| CHLT   | CMOS/TTL High-to-Low Transition Time (Figure 3)                                               |                                  |       | 1.8   | 3.5   | ns    |
| RSPos0 | Receiver Input Strobe Position for Bit 0 (Figure 15)                                          | f = 85 MHz                       | 0.49  | 0.84  | 1.19  | ns    |
| RSPos1 | Receiver Input Strobe Position for Bit 1                                                      | -                                | 2.17  | 2.52  | 2.87  | ns    |
| RSPos2 | Receiver Input Strobe Position for Bit 2                                                      |                                  | 3.85  | 4.20  | 4.55  | ns    |
| RSPos3 | Receiver Input Strobe Position for Bit 3                                                      |                                  | 5.53  | 5.88  | 6.23  | ns    |
| RSPos4 | Receiver Input Strobe Position for Bit 4                                                      | 7                                | 7.21  | 7.56  | 7.91  | ns    |
| RSPos5 | Receiver Input Strobe Position for Bit 5                                                      | 1                                | 8.89  | 9.24  | 9.59  | ns    |
| RSPos6 | Receiver Input Strobe Position for Bit 6                                                      |                                  | 10.57 | 10.92 | 11.27 | ns    |
| RSKM   | RxIN Skew Margin (Note 5) (Figure 16)                                                         | f = 85 MHz                       | 290   |       |       | ps    |
| RCOP   | RxCLK OUT Period (Figure 6)                                                                   | ≺ OUT Period ( <i>Figure 6</i> ) |       | Т     | 50    | ns    |
| RCOH   | RxCLK OUT High Time (Figure 6)                                                                | f = 85 MHz                       | 4     | 5     | 6.5   | ns    |
| RCOL   | RxCLK OUT Low Time (Figure 6)                                                                 | 7                                | 3.5   | 5     | 6     | ns    |
| RSRC   | RxOUT Setup to RxCLK OUT (Figure 6)                                                           | 7                                | 3.5   |       |       | ns    |
| RHRC   | RxOUT Hold to RxCLK OUT (Figure 6)                                                            | 7                                | 3.5   |       |       | ns    |
| RCCD   | RxCLK IN to RxCLK OUT Delay @ 25°C, V <sub>CC</sub> = 3.3V (Note 6)(Figure 8)                 |                                  | 5.5   | 7     | 9.5   | ns    |
| RPLLS  | Receiver Phase Lock Loop Set (Figure 10)                                                      |                                  |       |       | 10    | ms    |
| RPDD   | Receiver Powerdown Delay (Figure 13)                                                          |                                  |       |       | 1     | μs    |


Note 5: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window-RSPOS). This margin allows LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and source clock (less than 150 ps).

Note 6: Total latency for the channel link chipset is a function of clock period and gate delays through the transmitter (TCCD) and receiver (RCCD). The total latency for the 217/287 transmitter and 218/288A receiver is: (T + TCCD) + (2\*T + RCCD), where T = Clock period.

#### **AC Timing Diagrams**







DS90CR287/DS90CR288A

#### AC Timing Diagrams (Continued)

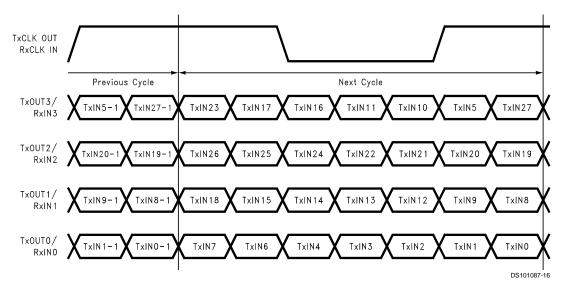



FIGURE 11. 28 Parallel TTL Data Inputs Mapped to LVDS Outputs

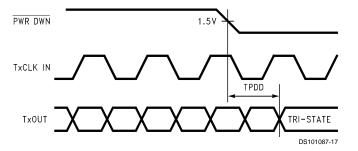



FIGURE 12. Transmitter Powerdown Delay

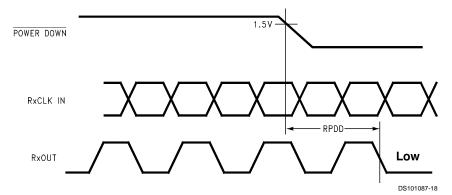
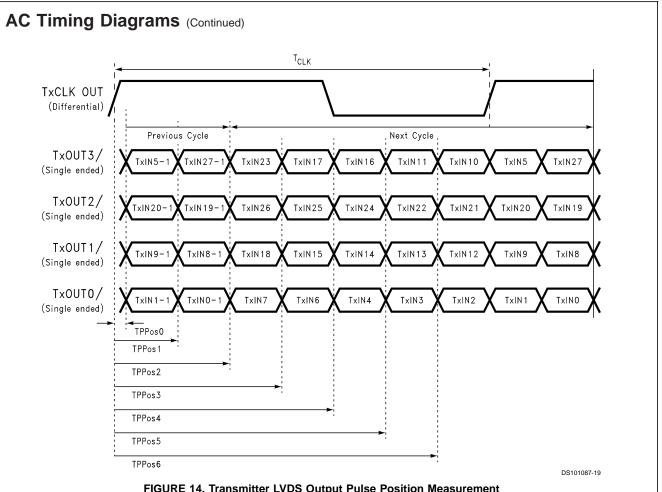
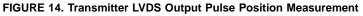
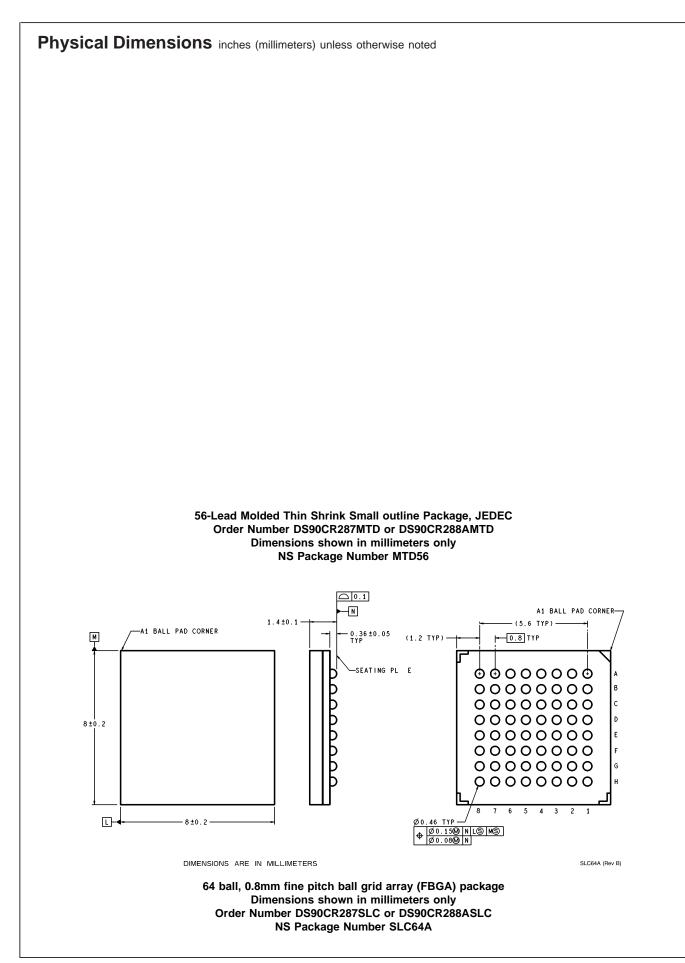






FIGURE 13. Receiver Powerdown Delay





DS90CR287/DS90CR288A



#### Notes

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 National Semiconductor Corporation Americas Email: support@nsc.com
 National Semiconductor Europe

 www.national.com
 Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com

 beutsch
 Tel: +49 (0) 69 9508 6208 English

 rel: +44 (0) 870 24 0 2171 Français Tel: +43 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.